Oil Analysis

Life Blood of your Machines

Using ISO standards for new oil sample we compare your oil to identify what is in alarm

Wear Metals, Contamination, Chemistry are the main components tested Trends of each oil component can identify which part of the machine is degrading

Hydraulics, Transformers, Gearboxes, Mobile Equipment, Fuels, Grease

- Verify new incoming oil is within acceptable limits for your machines
- Save \$\$\$ by filtering the oil to remove particulate/ contaminants instead of changing the oil
- Identify which contaminant is present water/coolants/ metals/fuels/hydraulics
- Wear Debris Analysis to determine source of metal, non-metals, contaminants
- ISO Alarms based on similar machine types, gearbox manufacturer, oil types
- Compare with vibration, infrared, ultrasound and oil data to determine severity
- Identify the presence of mixed lubricants
- Pressure, filtered or splash lubricated systems
- Let us save you money today!

				Wea	ar Met	als (p	pm)					ntamir etals (p		М	ulti-S	ource	Metal	s (ppn	1)	A	dditi	ve Met	als (pp	m)
Sample #	Iron	Chromium	Nickel	Aluminum	Copper	Lead	Tin	Cadmium	Silver	Vanadium	Silicon	Sodium	Potassium	Titanium	Molybdenum	Antimony	Manganese	Lithium	Boron	Magnesium	Calcium	Barium	Phosphorus	Zinc
1	64	0	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	21	0	0	65	3
				Samp	le Info	rmati	on						Cont	amina	ants					Flui	d Pro	pertie	s	
le #	Sampled			Received	Lube Time	High High		Change	Lube Added	Change	Fuel	Dilution		Soot		Water		Viscosity 40°C	Viscosity	Acid	Number	Base Number	Oxidation	Nitration
Sample	Date			Date	h	ŀ	,	Lube	gal	Filter	%	Vol		% Vol		%\	/ol	cSt	cSt	r KC	mg DH/g	mg KOH/g	abs/cm	abs/0.1 mm
1	13-Jul-2017		18-Jul-2017		0	(Unk	0	Unk						<.1 - FTIR 21		215		0	.25		24	3
	Particle Count (particles/mL)											Additional Testing												
																_		_		_				

> 10 μm

113

ı	Fluid Properties									
	Viscosity 40°C	Viscosity 100°C	Acid Number	Base Number	Oxidation	Nitration				
	cSt	cSt	mg KOH/g	mg KOH/g	abs/cm	abs/0.1 mm				
]	382		0.01		3	5				

Midlands Reliability & Consulting LLC
Engineered Mechanical Equipment
Condition Monitoring Technologies
Omaha, NE daver@midlandsrc.com
Dave Reynolds: 402.676.5984
www.midlandsrc.com

